Dietary long-chain n-3 PUFAs increase LPL gene expression in adipose tissue of subjects with an atherogenic lipoprotein phenotype.

نویسندگان

  • Syrah Khan
  • Anne-Marie Minihane
  • Philippa J Talmud
  • John W Wright
  • Margaret C Murphy
  • Christine M Williams
  • Bruce A Griffin
چکیده

We sought to test the hypothesis that dietary long-chain n-3 PUFA (LC n-3 PUFA) in fish oil stimulate the gene expression of lipoprotein lipase (LPL) in human adipose tissue (AT). In a randomized, double blind, placebo-controlled, cross-over study, 51 male subjects expressing an atherogenic lipoprotein phenotype (ALP) had their diets supplemented with fish oil for 6 weeks. As we previously reported for this group, supplementation with LC n-3 PUFA produced a decrease in fasting plasma triglyceride (TG) (-35%, P < 0.05), attenuation of the postprandial TG response (area and incremental area under the curve; AUC and IAUC, P < 0.05), and a decrease in small, dense LDL. The present study extended these observations by showing that these changes were accompanied by a marked increase in the concentration of LPL mRNA in adipose tissue (AT-LPL mRNA, +55%, P = 0.003) and post-heparin LPL activity (PH-LPL, +31%, P = 0.036). There was also evidence of an association between LPL gene expression and polymorphism in the apolipoprotein E gene. We conclude that the favorable influence of dietary n-3 PUFA on the ALP may be mediated, in part, through an increase in the plasma activity and gene expression of lipoprotein lipase in human adipose tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of some dietary intakes, anthropometric measurements and insulin resistance with the relative P53 gene expression in visceral and subcutaneous adipose tissue in obese, and non-obese subjects

Background and Objectives: The P53 is one of the genes involved in weight management. This study investigated associations of dietary intakes, anthropometric measurements and insulin resistance with relative P53 gene expressions.  Materials & Methods: Visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) were collected from 151 individuals, aging nearly 40 years, who underwent el...

متن کامل

The Association of Omentin Gene Expression in Visceral and Subcutaneous Adipose Tissues with Plasma Fatty Acids Profile and Dietary Fatty Acids

Introduction: Omentin, an adipokine, with anti-inflammatory effects reduces insulin resistance, and can hence, play an important role in prevention of cardiovascular disease and diabetes. The present study aimed to investigate the association of plasma and dietary fatty acids with gene expression of omentin in visceral and subcutaneous adipose tissues. Materials and Methods: Visceral and subcut...

متن کامل

Lipoprotein lipase and atherosclerosis.

Lipoprotein lipase (LPL) is a rate-limiting enzyme that hydrolyzes circulating triglyceride-rich lipoprotein such as very low density lipoproteins and chylomicrons. A decrease in LPL activity is associated with an increase in plasma triglycerides (TG) and decrease in high density lipoprotein (HDL) cholesterol. The increase in plasma TG and decrease in HDL cholesterol are risk factors of coronar...

متن کامل

Effects of Endurance Training on the Expression of Cathepsin B (CTSB) and Cathepsin L (CTSL) genes in the Adipose Tissue of Mice with a High-Fat Diet

Introduction: In high-fat diet-induced obesity, the levels of cathepsin L (CTSL) and cathepsin B (CTSB) increase in adipocytes, resulting in insulin resistance in the adipose tissue. In this study, the preventive effect of endurance training on the gene expression of CTSL and CTSB was investigated in the adipose tissue of mice with a high-fat diet. Materials and Methods: Twenty-one male mice (a...

متن کامل

Analysis of the association Hind III Polymorphism of Lipoprotein Lipase gene on the risk of coronary artery disease

Background: Coronary artery disease (CAD) is one of the leading causes of death and disability around the world. Interaction between genetic and environmental factors determines susceptibility of an individual to develop coronary artery disease . Lipoprotein lipase (LPL) play an important role in the metabolism of HDL-C ( High Density Lipoprotein Cholesterol ), LDL-C (Low Density Lipoprotein Ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 43 6  شماره 

صفحات  -

تاریخ انتشار 2002